"One of the alleged ‘proofs’ of the big bang model of origins is said to be the Cosmic Microwave Background (CMB). The radiation was discovered in 1964 by Penzias and Wilson for which they won the Nobel prize in physics. Soon after their discovery, it was claimed that this radiation is the ‘afterglow’ of the original ‘explosion’ or fireball of the big bang.
Since the time at which the radiation, which started as heat, was emitted from the fireball, the universe has allegedly expanded by a factor of 1,100. Thus, that ‘afterglow’ radiation has ‘cooled down’ to much longer wavelengths (‘stretched’ from the infrared to the microwave portion of the spectrum).
According to theory, the big bang fireball should be the most distant light source of all. Thus all galaxy clusters would be in the foreground of this source. Therefore all CMB radiation must pass the intervening galaxy clusters between the source and the observer, here on earth. This radiation passes through the intergalactic medium, between the galaxies in the clusters, and is scattered by electrons, through inverse Compton scattering, now known as the Sunyaev–Zel’dovich effect (SZE).
In 2006 it was reported and published in the Astrophysical Journal that indeed there is strong evidence, out to at least one degree from the cluster center, of an anomalous cooling effect. The anomaly was that the expected shadowing effect was not found when compared with what was expected from the SZE. The study looked for a shadow in the CMB radiation cast in the foreground of galaxy clusters, which must be closer to us than the alleged source of the background radiation. The study involved 31 galaxy clusters with a net result indicating that on average no systematic shadows were detected. In fact, the question was asked, Why are the clusters so relatively hot? Is there an additional source of emission that cancels out the expected shadow?
The results were reported in ScienceDaily.com under the headline “Big Bang’s Afterglow Fails Intergalactic ‘Shadow’ Test”. A team of University of Alabama Huntsville scientists, led by Dr Richard Lieu, used data from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) to scan the cosmic microwave background for shadows. Previous groups have made these sorts of studies but this was the first with WMAP data. Remember WMAP was designed specifically to detect the signature or echoes of the big bang. But … “Either it (the microwave background) isn’t coming from behind the clusters, which means the Big Bang is blown away, or … there is something else going on,” said Lieu." CMI
Since the time at which the radiation, which started as heat, was emitted from the fireball, the universe has allegedly expanded by a factor of 1,100. Thus, that ‘afterglow’ radiation has ‘cooled down’ to much longer wavelengths (‘stretched’ from the infrared to the microwave portion of the spectrum).
According to theory, the big bang fireball should be the most distant light source of all. Thus all galaxy clusters would be in the foreground of this source. Therefore all CMB radiation must pass the intervening galaxy clusters between the source and the observer, here on earth. This radiation passes through the intergalactic medium, between the galaxies in the clusters, and is scattered by electrons, through inverse Compton scattering, now known as the Sunyaev–Zel’dovich effect (SZE).
In 2006 it was reported and published in the Astrophysical Journal that indeed there is strong evidence, out to at least one degree from the cluster center, of an anomalous cooling effect. The anomaly was that the expected shadowing effect was not found when compared with what was expected from the SZE. The study looked for a shadow in the CMB radiation cast in the foreground of galaxy clusters, which must be closer to us than the alleged source of the background radiation. The study involved 31 galaxy clusters with a net result indicating that on average no systematic shadows were detected. In fact, the question was asked, Why are the clusters so relatively hot? Is there an additional source of emission that cancels out the expected shadow?
The results were reported in ScienceDaily.com under the headline “Big Bang’s Afterglow Fails Intergalactic ‘Shadow’ Test”. A team of University of Alabama Huntsville scientists, led by Dr Richard Lieu, used data from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) to scan the cosmic microwave background for shadows. Previous groups have made these sorts of studies but this was the first with WMAP data. Remember WMAP was designed specifically to detect the signature or echoes of the big bang. But … “Either it (the microwave background) isn’t coming from behind the clusters, which means the Big Bang is blown away, or … there is something else going on,” said Lieu." CMI
Thus saith God the LORD,
he that created the heavens, and stretched them out;
Isaiah 42:5