Thou tellest my wanderings:
put thou my tears into thy bottle:
are they not in thy book?
Psalm 56:8
"Scientists have found evidence of intelligent design even in the seemingly simplest and most minute parts of the body, such as in tears. Once thought to be composed of simple water, tears now are known to be of such high-level complexity that whole books have been written on them.
One of the most obvious functions of tears is to lubricate the eyeball and eyelid, but they also prevent dehydration of the various eye mucous membranes.
Keeping the corneal epithelium moist insures that the surface epithelial cells can survive, because all living cells require a watery (aqueous) environment. The average person blinks every two to ten
seconds, and with every blink the eyelid carries this miracle fluid over the eye’s entire front surface.
Tears form a complex tri-layered (or tri-phased) film consisting of an inner mucin dominated layer, an aqueous layer, and outer lipid (oil) layer.
The innermost tear layer (about 0.5 μm) contains primarily mucins, which are sticky carbohydrates that allow tears to adhere to the eye surface and produce a thin, even coat. The mucin also serves as a wetting agent by coating and wetting the microvilli of the corneal epithelium. Mucin is secreted by a specialized cell type called conjunctival goblet cells.
Tears called ‘basal’ or ‘continuous’ tears normally flow constantly in both humans and animals, and routinely drain into the lacrimal punctua located at the nasal aspect of the upper and lower lid margins at the nasal border of the eye. A tear flow is visible on the cheeks when the tear production is greater than the drainage system can handle, and the overflow runs down the cheek (a condition called epiphora).
Another important function of tears is that they bathe the eyes in a very effective antibacterial and antiviral agent, an enzyme called lysozyme. Lysozyme, from the word lysos (to split) and enzyme (because it is an enzyme that chemically splits certain chemical compounds), is a major source of the tear antigerm ability. Amazingly, lysozyme inactivates 90–95% of all bacteria in a mere 5 to 10 minutes. Without it, severe eye infections would be common.
Emotional tears are a response unique to humans, because only humans can weep. All animals that have eyes and live in the atmosphere produce tears to lubricate their eyes, but no creatures except humans possess the marvelous system that causes crying.
Emotional and irritation tears are stimulated by different sympathetic and parasympathetic nerves. The fifth cranial nerve, for example, is involved in reflex tears. A topical anesthetic applied to the surface of the eye can inhibit both reflex and irritant tears (the type triggered due to an eye irritant), but not emotional tears. Emotional tears evidently are initiated in the limbic system of the brain, that part which is responsible for emotions.
A computer literature search of over 16 million references by the author did not locate a single article that even speculated as to how the human tear system evolved. This conforms with Behe’s finding that no clear evidence exists for the evolution of even a single biochemical structure or system in the human body." CMI
put thou my tears into thy bottle:
are they not in thy book?
Psalm 56:8
"Scientists have found evidence of intelligent design even in the seemingly simplest and most minute parts of the body, such as in tears. Once thought to be composed of simple water, tears now are known to be of such high-level complexity that whole books have been written on them.
One of the most obvious functions of tears is to lubricate the eyeball and eyelid, but they also prevent dehydration of the various eye mucous membranes.
Keeping the corneal epithelium moist insures that the surface epithelial cells can survive, because all living cells require a watery (aqueous) environment. The average person blinks every two to ten
seconds, and with every blink the eyelid carries this miracle fluid over the eye’s entire front surface.
Tears form a complex tri-layered (or tri-phased) film consisting of an inner mucin dominated layer, an aqueous layer, and outer lipid (oil) layer.
The innermost tear layer (about 0.5 μm) contains primarily mucins, which are sticky carbohydrates that allow tears to adhere to the eye surface and produce a thin, even coat. The mucin also serves as a wetting agent by coating and wetting the microvilli of the corneal epithelium. Mucin is secreted by a specialized cell type called conjunctival goblet cells.
Tears called ‘basal’ or ‘continuous’ tears normally flow constantly in both humans and animals, and routinely drain into the lacrimal punctua located at the nasal aspect of the upper and lower lid margins at the nasal border of the eye. A tear flow is visible on the cheeks when the tear production is greater than the drainage system can handle, and the overflow runs down the cheek (a condition called epiphora).
Another important function of tears is that they bathe the eyes in a very effective antibacterial and antiviral agent, an enzyme called lysozyme. Lysozyme, from the word lysos (to split) and enzyme (because it is an enzyme that chemically splits certain chemical compounds), is a major source of the tear antigerm ability. Amazingly, lysozyme inactivates 90–95% of all bacteria in a mere 5 to 10 minutes. Without it, severe eye infections would be common.
Emotional tears are a response unique to humans, because only humans can weep. All animals that have eyes and live in the atmosphere produce tears to lubricate their eyes, but no creatures except humans possess the marvelous system that causes crying.
Emotional and irritation tears are stimulated by different sympathetic and parasympathetic nerves. The fifth cranial nerve, for example, is involved in reflex tears. A topical anesthetic applied to the surface of the eye can inhibit both reflex and irritant tears (the type triggered due to an eye irritant), but not emotional tears. Emotional tears evidently are initiated in the limbic system of the brain, that part which is responsible for emotions.
A computer literature search of over 16 million references by the author did not locate a single article that even speculated as to how the human tear system evolved. This conforms with Behe’s finding that no clear evidence exists for the evolution of even a single biochemical structure or system in the human body." CMI