"Now to consider the third source of variation, mutation. Mutations are mistakes in the genetic copying process. Each living cell has intricate molecular machinery designed for accurately copying DNA, the genetic molecule. But as in other copying processes mistakes do occur, although not very often. Once in every 10,000–100,000 copies, a gene will contain a mistake. The cell has machinery for correcting these mistakes, but some mutations still slip through. What kinds of changes are produced by mutations? Some have no effect at all, or produce so small a change that they have no appreciable effect on the creature. But many mutations have a significant effect on their owners.
Q: Based on the creation model, what kind of effect would we expect from random mutations, from genetic mistakes?
A: We would expect virtually all of those which make a difference to be harmful, to make the creatures that possess them less successful than before. And this prediction is borne out most convincingly. Some examples help to illustrate this.
Geneticists began breeding the fruit fly, Drosophila melanogaster, soon after the turn of the century, and since 1910 when the first mutation was reported, some 3,000 mutations have been identified. All of the mutations are harmful or harmless; none of them produce a more successful fruit fly—exactly as predicted by the creation model.
Is there, then, no such thing as a beneficial mutation? Yes, there is. A beneficial mutation is simply one that makes it possible for its possessors to contribute more offspring to future generations than do those creatures that lack the mutation.
Darwin called attention to wingless beetles on the island of Madeira. For a beetle living on a windy island, wings can be a definite disadvantage, because creatures in flight are more likely to be blown into the sea. Mutations producing the loss of flight could be helpful. The sightless cave fish would be similar. Eyes are quite vulnerable to injury, and a creature that lives in pitch dark would benefit from mutations that would replace the eye with scar-like tissue, reducing that vulnerability. In the world of light, having no eyes would be a terrible handicap, but is no disadvantage in a dark cave. While these mutations produce a drastic and beneficial change, it is important to notice that they always involve loss of information and never gain. One never observes the reverse occurring, namely wings or eyes being produced on creatures which never had the information to produce them."
Geneticists began breeding the fruit fly, Drosophila melanogaster, soon after the turn of the century, and since 1910 when the first mutation was reported, some 3,000 mutations have been identified. All of the mutations are harmful or harmless; none of them produce a more successful fruit fly—exactly as predicted by the creation model.
Is there, then, no such thing as a beneficial mutation? Yes, there is. A beneficial mutation is simply one that makes it possible for its possessors to contribute more offspring to future generations than do those creatures that lack the mutation.
Darwin called attention to wingless beetles on the island of Madeira. For a beetle living on a windy island, wings can be a definite disadvantage, because creatures in flight are more likely to be blown into the sea. Mutations producing the loss of flight could be helpful. The sightless cave fish would be similar. Eyes are quite vulnerable to injury, and a creature that lives in pitch dark would benefit from mutations that would replace the eye with scar-like tissue, reducing that vulnerability. In the world of light, having no eyes would be a terrible handicap, but is no disadvantage in a dark cave. While these mutations produce a drastic and beneficial change, it is important to notice that they always involve loss of information and never gain. One never observes the reverse occurring, namely wings or eyes being produced on creatures which never had the information to produce them."
CMI
