And the Spirit & the bride say, come.... Reveaaltion 22:17

And the Spirit & the bride say, come.... Reveaaltion 22:17
And the Spirit & the bride say, come...Revelation 22:17 - May We One Day Bow Down In The DUST At HIS FEET ...... {click on blog TITLE at top to refresh page}---QUESTION: ...when the Son of man cometh, shall he find faith on the earth? LUKE 18:8

Sunday, December 23, 2018

Creation Moment 12/23/2018 - Contradicting Holst's Musical

Through faith we understand that the worlds were framed by the word of God,..
Hebrews 11:3

"More discoveries of youthful phenomena contradict Gustav Holst’s musical tribute to “Saturn, the Bringer of Old Age.”
Young Rings
Saturn’s Rings Are Beautiful, But They Won’t Last (Space.com).
But if you could travel 300 million years into the future, you would need to, because by then, chances are those rings would be gone — and they could disappear even faster.

Saturn Is Losing Its Rings (Live Science). “We are lucky to be around to see Saturn’s ring system, which appears to be in the middle of its lifetime,” lead author James O’Donoghue. Ring rain is only one drain on Saturn’s rings, reports Meghan Bartels. The scientists measured such a high rate of loss, it implies the rings are losing “a huge amount of the icy rings, between 925 and 6,000 lbs. (420 to 2,800 kilograms) every second.” But there’s more:
The fate of the rings looks even grimmer considering research published earlier this year using Cassini data, which looked at a different, still-more-voluminous, type of infall from Saturn’s rings that’s descending into the planet. O’Donoghue and his co-authors didn’t include that infall in the estimates presented in their paper, but suggested in an accompanying statement that the two phenomena combined could gorge through the rings in more like 100 million years.
Saturn is losing its rings at ‘worst-case-scenario’ rate (Science Daily and NASA Astrobiology Magazine). Particles are being drawn into Saturn hourly in a process called “ring rain.” Looking back over time, the scientists give the rings a maximum age of 100 million years – just 1/45th the assumed age of Saturn. What happened so that we see them in the human era of telescopes? See the problem discussed in video clips from NASA Goddard Spaceflight Center. After explaining ring rain, the narrator puts an upper limit on age of 100 million years for the rings. He says, “This means Saturn wasn’t born this way, as the planet is known to be over 4 billion years old.” But is that really known? Nobody was there to measure it. Believing in 4 billion years creates a conundrum of explaining how Saturn got its rings so recently. These are incompatible beliefs.
“We estimate that this ‘ring rain’ drains an amount of
water products that could fill an Olympic-sized swimming pool from Saturn’s rings in half an hour,” said James O’Donoghue of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “From this alone, the entire ring system will be gone in 300 million years, but add to this the Cassini-spacecraft measured ring-material detected falling into Saturn’s equator, and the rings have less than 100 million years to live. This is relatively short, compared to Saturn’s age of over 4 billion years.O’Donoghue is lead author of a study on Saturn’s ring rain appearing in Icarus December 17.
A recent origin for Saturn’s rings from the collisional disruption of an icy moon (Icarus). The latest attempt to solve the ring age problem comes from John Dubinski. In this paper, he calls on the planetologist’s favorite tool – an impact – to get the rings to form just when humans can see them. Simultaneously, it solves the heat problem for Enceladus. Convenient for him, there is no way to prove it, because the Mimas-size impactor was never observed.

Young Moons

Enceladus is mentioned in the above articles as another body constantly losing material to Saturn. “The team also discovered a glowing band at a higher latitude in the southern hemisphere,” NASA Goddard says. “This is where Saturn’s magnetic field intersects the orbit of Enceladus, a geologically active moon that is shooting geysers of water ice into space, indicating that some of those particles are raining onto Saturn as well.” From there, the article sidesteps the problem of Enceladus’ age, preferring a hydrobioscopic dodge about possible life on Enceladus.

Long-term stability of Enceladus’ uneven ice shell (Icarus). This paper by European planetologists tries to keep Enceladus old, despite those hundred-some-odd geysers blasting material out to space every hour, creating the E-ring around Saturn and losing some of that ice to Saturn itself. They invent a model that keeps the ice shell in a steady state, but that doesn’t explain why heat flow up to 60 watts per square meter is coming out of that little bitty moon, the diameter of Arizona or Iowa (not that those states are little bitty, but that’s small for a solar system object).

Implications of nonsynchronous rotation on the deformational history and ice shell properties in the south polar terrain of Enceladus (Icarus). One of the conclusions of this paper is that “Enceladus’s tiger stripes are on the order of 100,000 years old.” That’s a wildly young age for standard views of the age of the solar system. Why did it happen that recently instead of billions of years ago?

Orbital evolution of Saturn’s mid-sized moons and the tidal heating of Enceladus (Icarus). Here’s another attempt to keep Enceladus old, this time by Japanese scientists using N-body simulations.
Right off the bat, though, they identify two problems:
--tidal forces that should pull the inner moons into Saturn over time,
--and the Enceladus geysers that shouldn’t be there.
Tidal heating, they say, is “orders of magnitude” too low to keep that small moon’s inferred ocean liquid. Their simulations “may” explain how these problems could be surmounted, but their model falls far short of proof. In the end, they call for ‘future study” of the possibilities.

Saturn’s moon Dione Covered by Mysterious Stripes (NASA Astrobiology Magazine). Parallel lines and intersecting lines on the surface of Dione are “unlike anything else we’ve seen in the Solar System,” says one planetary scientist. The material making the lines, dubbed “linear virgae,’ could be coming “from Saturn’s rings, passing comets, or co-orbital moons Helene and Polydeuces.” Ignore the astrobiological speculation inserted without justification. Whatever the stripes are, “they are among the youngest surfaces on Dione” says Alex Patthoff, co-author of a paper on Geophysical Research Letters. The paper says, “Here we seek to constrain whether the linear virgae are endogenic, suggesting that the surface of Dione has been geologically active recently or if they are exogenic, suggesting a recent, or even ongoing, process in the Saturn system.” They argue for the latter, but either way, they’re young."
CEH