Thank you for making me so wonderfully complex!
Your workmanship is marvelous.
Your workmanship is marvelous.
Psalm 139:14 NLT
"Stretched out, the DNA from all the cells in our body would reach Pluto. So how does each tiny cell pack a two-meter length of DNA into its nucleus, which is just one-thousandth of a millimeter across?
Now, scientists at the Salk Institute and the University of California, San Diego, have for the first time provided an unprecedented view of the 3D structure of human chromatin—the combination of DNA and proteins—in the nucleus of living human cells.
Salk researchers identified a novel DNA dye that, when paired with advanced microscopy in a combined technology called ChromEMT, allows highly detailed visualization of chromatin structure in cells in the resting and mitotic (dividing) stages.
X-rays and microscopy showed that the primary level of chromatin organization involves 147 bases of DNA spooling around proteins to form particles approximately 11 nanometers (nm) in diameter called nucleosomes. These nucleosome "beads on a string" are then thought to fold into discrete fibers of increasing diameter (30, 120, 320 nm etc.), until they form chromosomes. The problem is, no one has seen chromatin in these discrete intermediate sizes in cells that have not been broken apart and had their DNA harshly processed, so the textbook model of chromatin's hierarchical higher-order organization in intact cells has remained unverified.
What O'Shea's team saw, in both resting and dividing cells, was chromatin whose "beads on a string" did not form any higher-order structure like the theorized 30 or 120 or 320 nanometers. Instead, it formed a semi-flexible chain, which they painstakingly measured as varying continuously along its length between just 5 and 24 nanometers, bending and flexing to achieve different levels of compaction." Phys.org