Monday, April 9, 2018

Creation Moment 4/9/2018 - Pluto's Tombaugh Regio

Hath in these last days spoken unto us by his Son,
whom he hath appointed heir of all things,
by whom also he made the worlds;
Hebrews 1:2
 
"Why did astronomers expect Pluto’s surface to have many craters? This idea stems from a common belief that the solar system formed naturalistically over billions of years. The solar system supposedly formed from a large cloud of gas and dust 4.5 billion years ago. According to this theory, most of the matter in the solar system fell to the center to form the sun. The remaining material flattened into a disk, in which small particles began to stick together. These planetesimals gradually grew in size to form the planets, their satellites, and asteroids and comets.


...the small bodies of the solar system, including asteroids and Pluto, supposedly lack geological and significant weather processes. So their surfaces should be covered with craters. Several spacecraft have visited asteroids and sent back images revealing many craters on their surfaces. Most of the moons (or satellites) of the planets possess many craters as well. So astronomers expected Pluto to be more heavily cratered than our moon.

To their surprise, the images from New Horizons showed very few craters on Pluto’s surface. Pluto’s largest satellite, Charon, has more craters than Pluto, but far fewer than expected.

The most outstanding feature seen on Pluto’s surface is Tombaugh Regio, a large, heart-shaped region. Tombaugh Regio is light colored because it is made of various ices. Little of this ice appears to be water. Instead, most of it is primarily made of nitrogen, with a bit of carbon monoxide and methane. These ices are not as thick (viscous) as water ice, so they flow more easily, but they would likely require a heat source to trigger the motion. Tombaugh Regio has few craters, and Sputnik Planum, the western half of Tombaugh Regio, has no visible craters. In the evolutionary paradigm, this suggests that this region formed recently, so it must be young.

Why do Pluto and Charon have so few craters? Naturalistic astronomers don’t believe that Pluto itself is young, but that the surface is young. How can the surface be young but not Pluto itself? Their assumption is that material spewed from recent geological activity must have covered many craters.
Furthermore, some of the ice on Pluto’s surface appears to have moved in what amounts to glacial activity. This is not the sort of thing that one would expect on an old, dead world, either.
There are signs of other recent geological activity. Towering mountain ranges on Pluto rival the Rockies in height. High mountains tend to sink back down under their own weight, something that should have happened long ago if the mountains are old.

What is responsible for Pluto’s geological activity? Astronomers think that this can happen one of two ways.
One possibility is an internal source of heat..........Pluto does not appear to have radioactive materials, which would make it very dense. Its density is very low, less than half the density of the earth. This low density is consistent with Pluto being a mixture of ice and rock. These rocks would not have sufficient radioactivity to heat Pluto for billions of years.
A second heating mechanism could be tidal flexing. Large astronomical objects can stretch and squeeze their smaller neighbors........it cannot work at all on Pluto. No massive bodies orbit nearby.

Another explanation—anathema to evolutionary astronomers—is possible. What if Pluto is not nearly as old as many scientists think? If Pluto is very young, its surface may not have had enough time to accumulate many craters. Or perhaps Pluto was created with internal heat that is still there. That could drive geological processes that could not only erase many craters but also explain the gases that are released from within Pluto to sustain a thin atmosphere. But if Pluto is billions of years old, none of its internal heat would remain." AIG